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During this period, much work was spent in an attempt to use theoretical
UV line indices as a basis for spectral calibration of the program stars. Figure
1 shows five line indices as functions of effective temperature and log g,
calculated with the spectral synthesis programs of Kurucz (1993). Open stars
and circles are observed values from Fanelli et al. (1992), using the spectral
class - effective temperature calibration of Schmidt-Kaler (1982). We conclude
that these line indices may be used to determine an effective stellar
temperature, but with uncertainties ~ few thousand degrees. Also, for the
hotter stars, theoretical line opacities are systematically low compared to

observations.

We have also found that Kurucz (1992) new models appear to represent hot
stars very well, even at far-UV wavelengths. This is shown in Figure 2, where
two spectra of p Col (spectral class 09.5 V) are compared to a synthetic
spectrum for T.s; = 33,000K, log g = 4.0. Also shown (uppermost curve), is
an empirical estimate of the intrinsic flux distribution for 09.5 V stars from

Papaj, Wegner, & Krelowski (1990). . =~: -

Using theoretical model spectra as comparison spectra, we have calculated
extinction curves for { Oph, ¢ Per, and ¢ Sco. These are shown in Figures 3, 4,
and 5, respectively. Also shown (dashed curves) are the best fitted model
based on a silicate-carbon grain mixture, with independent sets of “large” and
“small” grains. The “small” grains are grains in the Rayleigh limit with a
radius of 0.005 pm, while the “large” grains correspond to a power law size
distribution (n(a) o a~3%) with radii in the range of [amin, amaz] as indicated.

These stars span the range of extinction variations in the diffuse interstellar



medium. We conclude that the curves corresond to a sequence of decreasing
numbers of intermediate size grains (0.01 - 0.04 pm) being present. Also, the
position of the 4.6 um™! extinction hump indicates a simultaneous increase in

the numbers of small and oblate graphite grains.

Calculations allowing organic refractory mantles on the silicate grains or
substituting amorphous carbon grains for the graphite grains in all instances
give worse fits to the observations. A small admixture of PAHs (~ few

percent) improves the extinction fit only in the case of { Oph.

A poster paper reporting the results of these investigations was presented at
the 183rd American Astronomical Society meeting in Washington D.C. 11 - 15
January, 1994 (Bull. AAS., Vol. 25, No. 4., 1312).
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FIG1.— UV line indices as functions of effective temperature and
log g. Curves, synthetic indices calculated from Kurucz (1993)

models with log g as indicated. Open stars, observed main sequence

stars. Open circles, observed giant stars. (Observed values from
Fanelli et al. 1992). Error bar, estimated uncertainty in observed

line index.
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FIG.2— Two lower curves, u Col spectra from Table 1 (lower one is binned high—resolution spectrum).
Next higher curve, Kurucz model spectrum for Ty = 33,000K, log g =4.0.
Top curve, intrinsic flux distribution for 09.5 V stars (Papaj, Wegner, & Krelowski 1990).
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FIG.3— Dashed curves, xz—fits to coadded normalized extinction data.
Bars show 1o observational random errors. Solid curves, observed
extinction curves for a comparison model variation of +2,500K in

T, +0.25 in log g. Dust model parameters as indicated. Si and C
values refer to fraction of cosmic abundances tied up in larger grains
and in the very small grains, respectively. R is the model value for the
ratio of visual to selective extinction.
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FIG.4— x°—fits to coadded extinction curves.
Notation as in Figure 3.
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FIG.5— xz—fits to coadded extinction curves.
Notation as in Figure 3.
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